

Fractionation and chemical analysis of watercourse SPMD extracts

Tobias Kind, Brano Vrana,
Werner Brack and Gerrit Schüürmann

Content:

- Introduction
- Pre-treatment of SPMD extracts
- Fractionation plan
- Substance classes and single compounds
- Example of physico-chemical calculations
- Summary and outlook

<u>Introduction</u> - **S**emi**p**ermeable **M**embrane **D**evices (SPMDs)

- SPMDs are passive in situ partitioning systems
- SPMDs can monitor truly dissolved organic contaminants (air/water/sediment)
- SPMDs mimic bioconcentration processes and allow detection of trace chemicals

SPMD Design

SPMD deployment sites

• in the highly polluted area of Bitterfeld/Wolfen

chemical production plants from 1960-1991

• 3000 t DDT; 7600 t HCH; other residues

SPMD Sampling site - Spittelwasser Creek

Pre-treatment and fractionation of SPMD extracts

- Dialytic recovery of analytes with hexane
 - for solvent exchange (trioleine with hexane)
- Size exclusion chromatography (SEC)
 - for separating trioleine (and sulfur) from the main hexane fraction
- Flash-Chromatography
 - modified silica-column chromatography (Gogou et al. 1998)
 - elution of substances with different polar solvents
 - separation of extract into 4 fractions (from unpolar to polar compounds)

Fractionation of SPMD extracts with flash-chromatography

F1: chlorobenzenes, PCBs, n-alkanes

F2: branched alkanes, PAHs, alkyl-PAHs, HCHs

F3: chloronitrobenzenes, DDTs, DDDs

F4: oxy-PAHs, phthalates, phenoles

Fractions and compound classes

Often analyzed substance classes: PAHs, HCHs, PCBs, Dioxines, herbicides

Analysis of whole extract:

Fraction 1: polychlorinated benzenes, PCNs, PCBs, alkanes; tetrabutyltin

Fraction 2: branched alkanes, PAHs, alkyl-PAHs, DDTs, DDDs, DDEs, alkyl benzenes; diphenylether

Fraction 3: chloronitrobenzenes, alkylated nitrophenoles, HCHs, acridines, oxy-PAHs; benzophenone

Fraction 4: phthalates, chlorophenoles, alkylphenoles, dyestuffs, musk ketones

• logK_{OW} range of detected substances : 1,1 - 7,4

Selected chemicals sampled by SPMDs

High amounts of 2-(methylthio)benzothiazole (MTBT) in SPMD extracts

- also found in german bight of the north sea (Bester et.al. 1997)
- Pathway: biotransformation of fungicide TCMTB (Busan) (Brownlee 1992) or metabolite from rubber production processes

TCMTB MBT MTBT
$$\log K_{\rm ow}:3,15$$

Selected chemicals sampled by SPMDs

- High amounts of **Nitrofen** (TOK) in SMPDs
- used as weed killer/fungicide
- carcinogen and suspected endocrine disruptor
- forbidden in USA since 1983

M : 284 g/mol

 $logK_{OW}: 4,64$

S : 1 mg/L

Selected chemicals sampled by SPMDs

- Prometryn (s-triazine compound)
- wide used herbicide
- produced in Bitterfeld from 1960 to 1990
- found in sediment in the area of Bitterfeld and confirmed as a chemical causing significant toxicity to algae (scenedesmus) (*Brack et al. 1999*)

M : 241 g/mol

 $logK_{OW}: 3,51$

S : 33 mg/L

Brief summary

- SPMDs sample a large range of weak hydrophobic to hydrophobic substances.
- SPMDs simulate a "worst case scenario" in terms of the number of accumulated chemicals.
- SPMDs sample only truly dissolved substances.

Main approaches:

- application of fractionation techniques for the determination of trace levels of contaminants
 toxicity identification evaluation (TIE)
- calculation of distribution patterns for know toxicants

Example of physico-chemical calculations - fugacity quotients -

Calculation of water concentrations

- linear model (for linear uptake kinetics)
- used for hydrophobic substances

The ambient "truly dissolved" water concentration (C_w) can be estimated based on the concentration in the SPMD (C_{SPMD}), the volume of the SPMD (V_{SPMD}), the effective sampling rate (R_s), and the time of deployment (t):

$$C_w = C_{SPMD} * V_{SPMD} / (R_s *t)$$

- equilibrium model (assuming SPMD has reached saturation for an analyte)
- used for less hydrophobic substances

$$C_{w} = C_{SPMD} * K_{LW}$$

fugacity quotient: f_w / f_s

Fugacity quotients

- fugacity quotients give potential flux directions (if water or sediment are potential sources of contaminants)
- important for understanding the partitioning of substances between different compartiments (global partitioning, seasonal trends)

$$f_{w} = C_{w}/Z_{w}$$
$$f_{S} = C_{S}/Z_{S}$$

$$Z_{\rm w} = 1/H$$

$$f_S = C_S/Z_S$$

$$Z_{S} = (f_{OC} \rho K_{OC})/H$$

f = fugacity

Z = fugacity capacity

H = Henry's law const

C = concentration

Fugacity quotients

Summary and Outlook

SPMDs sample a broad spectrum of hydrophilic and lipophilic substances.

A fast non target screening of SPMD extracts with the presented analytical methods is a good basis for a decision-making of further steps in SPMD research, including:

- determing physico-chemical properties for selected contaminants
- choosing suitable biotests for SPMD extracts
- powerfull basis for toxicity identification evaluations (TIE)

Thank you!

Summary and Outlook

SPMDs sample a broad spectrum of truly dissolved hydrophilic and lipophilic substances.

The fractionation and analytical determination of SPMD extracts with the methods presented here, are a solid basis for further steps in SPMD research, including:

- determing physico-chemical properties for selected contaminants
- choosing suitable biotests for SPMD extracts
- powerfull basis for toxicity identification evaluations (TIE)

AMDIS

Automated Mass spectral Deconvolution & Identification System (NIST)

AMDIS automatically extracts pure (background free) component mass spectra from highly complex GC-MS data files and uses these purified spectra for a search in a mass spectral library.

Analysis steps:

- noise analysis
- component perception
- spectrum deconvolution
- compound identification

